Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.17.21258858

ABSTRACT

Objectives: To compare the temporal changes of IgM, IgG, and IgA antibodies against the SARS-CoV-2 nucleoprotein, S1 subunit, and receptor binding domain and neutralizing antibodies (NAbs) against SARS-CoV-2 in patients with COVID-19. Methods: A total of five patients in Nissan Tamagawa Hospital, Tokyo, Japan confirmed COVID-19 from August 8, 2020 to August 14, 2020 were investigated. Serum samples were acquired multiple times from 0 to 76 days after symptom onset. Using a fully automated CLIA analyzer, we measured the levels of IgG, IgA, and IgM against the SARS-CoV-2 N, S1, and RBD and NAbs against SARS-CoV-2. Results: The levels of IgG antibodies against SARS-CoV-2 structural proteins increased over time in all cases but IgM and IgA levels against SARS-CoV-2 showed different increasing trends among individuals in the early stage. In particular, we observed IgA antibodies increasing before IgG and IgM in 3/5 cases. The NAb levels against SARS-CoV-2 increased and kept above 10 AU/mL more than around 70 days after symptom onset in all cases. Furthermore, in the early stage, NAb levels were more than cut off value in 4/5 COVID-19 patients some of whose antibodies against RBD didn't exceed 10 AU/mL. Conclusions: Our findings indicate that patients with COVID-19 should be examined for IgG, IgA and IgM antibodies against SARS-CoV-2 structural proteins and NAbs against SARS-CoV-2 in addition to conventional antibody testing methods for SARS-CoV-2 (IgG and IgM kits) to analyze the diversity of patients' immune mechanisms.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.16.20155796

ABSTRACT

PCR methods are presently the standard for the diagnosis of Coronavirus disease 2019 (COVID-19), but additional methodologies are needed to complement PCR methods, which have some limitations. Here, we validated and investigated the usefulness of measuring serum antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the iFlash3000 CLIA analyzer. We measured IgM and IgG titers against SARS-CoV-2 in sera collected from 26 PCR-positive COVID-19 patients, 53 COVID-19-suspected but PCR-negative patients, and 20 and 100 randomly selected non-COVID-19 patients who visited our hospital in 2020 and 2017, respectively. The within-day and between-day precisions were regarded as good, since the coefficient variations were below 5%. Linearity was also considered good between 0.6 AU/mL and 112.7 AU/mL for SARS-CoV-2 IgM and between 3.2 AU/mL and 55.3 AU/mL for SARS-CoV-2 IgG, while the linearity curves plateaued above the upper measurement range. We also confirmed that the seroconversion and no-antibody titers were over the cutoff values in all 100 serum samples collected in 2017. These results indicate that this measurement system successfully detects SARS-CoV-2 IgM/IgG. We observed four false-positive cases in the IgM assay and no false-positive cases in the IgG assay when 111 serum samples known to contain autoantibodies were evaluated. The concordance rates of the antibody test with the PCR test were 98.1% for SARS-CoV-2 IgM and 100% for IgG among PCR-negative cases and 30.8% for SARS-CoV-2 IgM and 73.1% for SARS-CoV-2 IgG among PCR-positive cases. In conclusion, the performance of this measurement system is sufficient for use in laboratory testing.


Subject(s)
COVID-19
3.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-44976.v1

ABSTRACT

The accurate and prompt diagnosis of SARS-CoV-2 infection is required for the control and treatment of the coronavirus infection disease 2019 (COVID-19). In this study, we aimed to investigate the time courses of the anti-severe acute corona respiratory syndrome coronavirus 2 (SARS-CoV-2) IgM and IgG titers and to evaluate the sensitivity and specificity of such tests according to the specific day after the onset of COVID-19 among a patient population in Japan. We measured the titers of SARS-CoV-2 IgM and IgG in sera from 100 subjects, including 26 symptomatic COVID-19 patients, using chemiluminescent immunoassay (CLIA) methods utilizing magnetic beads coated with SARS-CoV-2 nucleocapsid protein and spike protein. The results of a ROC analysis suggested the possibility that the cutoff values in Japan might be lower than the manufacturer’s reported cutoff (10 AU/mL): 1 AU/mL for IgM and 5 AU/mL for IgG. The sensitivity of the test before Day 8 after symptom onset was less than 50%; at Days 9-10, however, we obtained a much higher sensitivity of 81.8% for both IgM and IgG. At 15 days or later after symptom onset, the SARS-CoV-2 IgG test had a sensitivity of 100%. These results suggest that if the number of days since disease onset is taken into consideration, these antibody tests could be very useful for the diagnosis of COVID-19 and similar diseases.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.16.20067231

ABSTRACT

BACKGROUND: The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread globally. The laboratory diagnosis of SARS-CoV-2 infection has relied on nucleic acid tests. However, there are many limitations of nucleic acid tests, including low throughput and high rates of false negatives. More sensitive and accurate tests to effectively identify infected patients are needed. METHODS: This study has developed fully automated chemiluminescent immunoassays (CLIA) to determine IgM and IgG antibodies to SARS-CoV-2 in human serum. The assay performance has been evaluated at 10 hospitals. Clinical specificity was evaluated by measuring 972 hospitalized patients with diseases other than COVID-19, and 586 donors of a normal population. Clinical sensitivity was assessed on 503 confirmed cases of SARS-CoV-2 by RT-PCR and 52 suspected cases. RESULTS: The assays demonstrated satisfied assay precision with coefficient of variation (CV) of less than 4.45%. Inactivation of specimen does not affect assay measurement. SARS-CoV-2 IgM shows clinical specificity of 97.33% and 99.49% for hospitalized patients and normal population respectively. SARS-CoV-2 IgG shows clinical specificity of 97.43% and 99.15% for the hospitalized patients and the normal population respectively. SARS-CoV-2 IgM and IgG show clinical sensitivity of 85.88% and 96.62% respectively for confirmed SARS-Cov-2 infection with RT-PCR, of 73.08% and 86.54% respectively for suspected cases. CONCLUSIONS: we have developed fully automated immunoassays for detecting SARS-CoV-2 IgM and IgG antibodies in human serum. The assays demonstrated high clinical specificity and sensitivity, and add great value to nucleic acid testing in fighting against the global pandemic of the SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
SELECTION OF CITATIONS
SEARCH DETAIL